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Abstract. This chapter addresses computing strategies designed to enable field
mobile robots to execute tasks requiring effective autonomous traversal of nat-
ural outdoor terrain. The primary focus is on computer vision-based perception
and autonomous control. Hard computing methods are combined with applied soft
computing strategies in the context of three case studies associated with real-world
robotics tasks including planetary surface exploration and land survey or reconnais-
sance. Each case study covers strategies implemented on wheeled robot research
prototypes designed for field operations.

1 Introduction

Hard computing methods which address robot perception and control issues
rely upon strong mathematical modeling and analysis [1,2]. The various ap-
proaches proposed to date are suitable for control of industrial robots and
automatic guided vehicles that operate in structured environments and per-
form relatively well-defined repetitive tasks, such as manipulator positioning
or tracking fixed/pre-programmed trajectories. Operations in unstructured
environments, on the other hand, require robots to perform more complex
tasks for which sufficient analytical models for control are often difficult to
develop. This is typically the case in field robotics, which is concerned with
development and application of robotic systems as tools for performing tasks
or missions in unstructured, demanding, and/or hazardous natural environ-
ments (e.g., land surfaces and subsurfaces, sea, air, space, etc.). For appli-
cations in which analytical models are available, 1t is questionable whether
or not the models are complete, or whether uncertainty and imprecision are
sufficiently accounted for [3,4]. These issues become very significant in appli-
cations of autonomous field and space robotics [5], where target environments
are not always known in sufficient detail to enable robust robotic system per-
formance using hard computing techniques alone.

Field robotic vehicles intended for operation on land surfaces are the focus
of this chapter. The target environments consist of natural rugged terrain, as
opposed to relatively flat ground surfaces such as paved roadways. For the lat-
ter case (as with indoor environments), the motion controls for robot mobility
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systems can often be designed based on linear system models, or simpified
nonlinear models of vehicle kinematics or dynamics assuming motion on a
2-D plane [2]. Practical mobility control systems for use in outdoor rugged
terrain must account for a wider array of real-world complexities [6], the most
fundamental of which is the fact that complex motions in the third dimen-
sion occur quite frequently. The situation is similar for rovers that interact
with complex planet surfaces by roving across or burrowing through terrain
[7,8]. For the robotic spacecraft that delivers them to the surface of remote
planets, conventional estimation and control techniques have proven quite
useful [9]. This is due to the fact that the physical laws of orbital mechan-
ics and planetary atmospheric aerodynamics are reasonably well understood
and well-behaved in space. Unfortunately, the complexities of terrestrial sur-
face mobility and navigation recur once rovers are deployed on remote planet
surfaces (and are sometimes compounded by reduced-gravity effects).

Autonomous mobile field robots must be designed to handle complex,
and often uncharted, terrain encountered through the course of navigation,
while remotely situated relative to human supervisors. Robust mission execu-
tion requires systems that can autonomously, and with minimal supervisory
communication from humans, operate in natural environments and perform
goal-directed tasks. Robotics researchers at the NASA Jet Propulsion Labora-
tory (JPL) have integrated soft computing techniques with more conventional
hard computing methods to address some of the problems related to surface
exploration of planet Mars using autonomous rovers, as well as control prob-
lems specific to terrestrial land vehicles. Soft computing strategies for rover
perception, navigation decision making, and control have been developed and
applied to complement conventional methods in an effort to achieve required
levels of robustness. These include applications of fuzzy logic and neural net-
work computing methods that facilitate reasoning and action selection in
unfamiliar environments in order to enable reliable and safe mission execu-
tion. Using three case studies, several approaches are presented in this regard
that have been integrated on field robot research prototypes and validated
through operation on natural terrain. Each case study is presented following
a brief overview in the context of general field mobile robot problems.

2 Case Study Overview

Autonomous mobile robot computational systems include functional and/or
behavioral components that process sensory data, and maintain internal state
information in order to perform repetitive cycles of processing designed to
achieve specified tasks. Repetitive activities typically include the following:
generation of perceptions (and sometimes models) of the target environment,
utilization of sensing and perceptions to compute intelligent navigation or
motion planning decisions, and execution of motion decisions via automatic
control of actuators. This i1s the so-called sense-plan-act cycle common to
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many robotics tasks. Three isolated case studies are presented below as rep-
resentative examples of how soft computing strategies have been applied to
address some important problems, associated with this cycle, that arise in
field robotics applications. Each covers a specific field robot implementation
of the strategies applied. The implementation target in each case is a dif-
ferent wheeled mobile robot, and although the cases are i1solated, they share
the following common thread. Each case study addresses a function typically
included in the repetitive cycle of activities associated with the overall task
of effectively traversing natural terrain for purposes such as planetary surface
exploration, land survey, and reconnaissance. The techniques are also relevant
to other real-world field applications involving military and search/rescue op-
erations, as well as agricultural, construction, and mining automation. The
overall focus here is on visual perception and intelligent control. In particular,
the case studies cover: (1) stereo vision-based perception for autonomous nav-
igation, (2) monocular vision-based perception for effective mobility, and (3)
control synthesis for locomotion systems complicated by nonlinearity and/or
lack of suitable mathematical models. A thorough coverage of complementary
soft computing-based navigation techniques can be found in [3].

Case studies 1, 2, and 3 center around a prototype planetary rover, a
commercially available mobile robot research platform, and an unmanned
ground vehicle, respectively. The intended application environment for case
studies 1 and 2 is a barren landscape with soils of various consistencies and
cluttered with rocks, such as the surface of planet Mars. For case study 3,
the application environment may consist of unpaved roads, foliage, and/or
grass. In all cases, the application environments are neither engineered nor
structured in any way to accommodate the field robots. To overcome some of
the practical problem constraints associated with task complexity and envi-
ronmental challenges, i1t is sometimes advantageous to augment conventional
hard computing methods with soft computing techniques. The case studies
detail three instances for which this was achieved in the respective computing
implementations for robot perception and control. Prior to field deployment,
applied soft computing strategies must undergo extensive testing to ensure
that the host robotic systems function properly, and are reliable enough to
survive mission duration and achieve mission success. Advanced technolo-
gies are therefore developed in stages leading to increased readiness for field
application; special concerns are measured against specific requirements of
particular tasks/missions. Case studies presented herein reflect the present
state of development of several soft computing strategies, and the scope of
each is limited to overviews of ongoing technical research. Sections 3 and 4
present the case studies covering practical approaches to intelligent vision-
based perception of natural terrain for autonomous navigation and mobility.
This is followed by coverage of an adaptive speed control solution for field
locomotion in Section 5. Each section describes the problem(s) addressed
and identifies the hard computing and soft computing aspects of the applied
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solution. Motivation for adopting particular soft computing techniques is dis-
cussed, followed by descriptions of the implementation.

3 Case Study 1: Stereo Processing for Navigation

In 1997, the successful NASA Mars Pathfinder mission demonstrated that
geological science exploration tasks can be performed within short range of
a lander using small lightweight rovers with modest computational resources
[10]. On future missions, more complete coverage of the planetary surface
will require the development of higher level autonomy onboard the rovers.
However, it is likely that advanced autonomy capabilities will also have to
be realized using modest computational resources. This is due to practical
limitations on mass and power typical of space flight avionics, as well as
limited processing capabilities characteristic of radiation-hardened CPUs. A
key component of required advanced autonomy is long-range navigation with
obstacle detection and avoidance capabilities. Traditional methods used for
achieving such autonomy often rely on range maps generated from a stereo
image pair. Depending on the implementation, stereo image processing can
consume significant portions of the time required to complete the sense-plan-
act cycle, and/or require relatively large computational resources. For long-
range rover missions, fast and efficient algorithms are desirable for reducing
the amount of time required for stereo processing. A prototype technology
rover called Sample Return Rover (SRR) is used for development and testing
of such algorithms at JPL (Fig. 1). The sensor suite for navigation consists
of a stereo pair of hazard cameras body-mounted to the front of the rover,
and a single goal and stereo pair of cameras mounted to an articulated mast.
This case study addresses algorithm designs for the generation of fast obstacle
detection and avoidance using the front hazard cameras.

A variety of computational methods apply to stereo processing includ-
ing maximum likelihood [11], dynamic programming [12], and biologically-
inspired methods based on neural networks [13] and wavelets [14]. This case
study employs a fuzzy self organizing feature map (FSOFM) algorithm com-
bined with wavelet image processing to generate navigation commands for a
behavior-based control system called BISMARC (Biologically Inspired System
for Map-based Autonomous Rover Control). The system architecture for BIS-
MARC is shown in Fig. 2. The stereo processing system does not build range
maps as is done traditionally, but instead relies on a raw encoding of the
image disparity information for reactive action generation.

3.1 Motivation and Approach

Striate cortical cells in cats have been found to respond to both monocular
and binocular inputs [15]. In addition, cells in the retinal mammalian visual
system respond to small lines and edges [16]. The behavior of these cells can
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Fig.1. SRR, a JPL rover. Fig. 2. BISMARC system architecture.

be modeled using Gabor wavelets by determining the maximal response of
filters that are tuned to specific frequency and orientation [14]. This method
of analysis detects salient features that correspond to points of significant
curvature change in the image. The vision preprocessing level for BISMARC
uses such wavelet-based algorithms to decompose the images generated by
each of the stereo cameras. The wavelet decomposition provides information
about the scale, location, and orientation of features in an image. Because
the wavelet decomposition contains information about the local frequency
content of an image, it can represent visually important features (such as
edges) more compactly than many of the other transforms commonly used
in image processing [17].

After the wavelet transform is performed on each of the stereo images, a
vector is formed using the multiresolution information from the two highest
levels of the wavelet horizontal and vertical detail channels. This vector of
length 52—2 elements, where n is the image width, is the input to the FSOFM
— the output being any of six action states: go forward, backup, turn right,
turn left, stop at goal, or pick either direction to turn. Raw stereo visual infor-
mation is being encoded without any attempt to label individual features or
objects beyond the desired action associated with the input pattern. Although
the FSOFM is an unsupervised network, it can be trained by presenting it
with samples and labeling the output nodes that correspond to each of the
generated actions. The weights are then clamped for all subsequent runs.

The process of depth analysis can be functionally simulated using a com-
bination of wavelet-based preprocessing coupled with a neural network that
responds to binocular inputs. However, computation of Gabor wavelet coef-
ficients for the full range of frequencies and orientations necessary to com-
pletely encode an image is computationally expensive, which limits their use-
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fulness for fast image processing. There is another class of wavelet transforms
that is more suited for constrained rover computing environments.

3.2 Wavelet and Neural Network Implementation Strategy

The standard wavelet decomposition of a general signal (or image) f is a
representation in terms of linear combinations of translated dilates of a single

function :
f(I) = chu,kd)u,k(;ﬁ)a (1)
vk

with ¢, k(z) = 2¥/24(2" 2 — k) for integers v and k. The mapping that takes
f into the corresponding coefficients ¢,  is called the wavelet transform of f.
Since the transform is linear, all of the information content of the image or
signal is contained in the ¢, ;s. The detail channels of the coefficient space
are defined as the orientation-specific difference between average channels
at resolution v and v — 1. A hierarchical representation of f is obtained by
varying the scale from coarse (small v) to fine (large v).

There are a number of limitations to standard wavelets, including border
artifacts and a dyadic (power of 2) restriction on image sizes. A method
that can be used to avoid these problems involves the use of biorthogonal
wavelets [18,19]. A biorthogonal wavelet decomposition uses two families of
basic building blocks lbf/,k and 1/~)f,7k to decompose the image as

ORI D) M AN (2)

ifinite v kK

where <f, 1/;f,’k> is defined as the inner product of f and 1/;5/,1« This type of

wavelet can be defined to exist within an arbitrarily shaped region [18,19].
We have previously used this form of the transform for texture analysis in
adaptive, stereo range map generation for local rover navigation [20]. An
example of the biorthogonal wavelet transform applied to a stereo pair of
images from SRR’s hazard cameras is shown in Fig. 3, where the hierarchical
display format of Mallat is used [17]. The set of coefficients that correspond
to the average channel at the coarsest resolution v is in the upper left hand
corner of the figure. The coefficients corresponding to the vertical, diagonal,
and horizontal detail channels are shown in clockwise order from the upper
right hand corner of the figure, and at different levels of resolution while
traveling from the lower right to the upper left corner.

Fuzzy Self-Organizing Feature Map The neural network model [21] used
for the action generation process is a modification of the self-organizing fea-
ture maps of Kohonen [22]. Tt is also a member of the generalized class of
clustering networks developed by Pal, Bezdek, and Tsao [23] (hereafter re-
ferred to as GLVQ). The FSOFM, shown in Fig. 4, consists of three layers.
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Fig. 3. Wavelet processed stereo pair used as FSOFM preprocessing step.

The input layer feeds forward into a distance layer which determines the dis-
tance between the input vector and the current weights using a predefined
metric. The distance layer then feeds forward into a membership layer which
calculates the membership values uj; € [0.0, 1.0] of the input vector to the set
of all output vectors. This is done using the following form derived from the
fuzzy c-means algorithm [24] and used in a previously developed computer
vision system [25]:

1
j=1 d; 2
5 (4) 7
=0 i
where j is the number of output nodes, d;; is the distance between the input
vector & and weight vector W;, and m € [2.0,00) is a weighting exponent.

These membership values u;; are then fed back into the network and partic-
ipate in the weight update rule as:

(3)

Uj; =

Wj = Wi + uji x dw; (4)

where dw; = (& — W;). The addition of a feedback loop allows the network
to respond to the localized patterns of activity in the distance layer. The
sum of membership values for any given input vector to all of the j sets is
normalized to 1.0. This means that an input vector that is not close to any of
the previously defined sets (an outlier) will have an equal membership value
to all sets approximately equal to 1/j. Such a vector would be classified as
unfamiliar. The complete algorithm is given as [26]:

P1. Randomly initialize weights W; V j to values between 0 and 1. Set the limit
value to be sufficiently small, e.g., 0.001, and set total_dif f to 0.
P2. For each vector input &;, 1 =1, 2,..., n where n is the number of inputs:
1. Calculate d;; and determine the feedback membership value uj; for each
input vector using Eq. (3).
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. Update the weight change factor dw; such that dw; = (& — Wj).

. Save the current weight W, as W _old; before updating weight.

. Update weight W; using Eq. (4).

. Return the value dif f, where dif f = > (W, —W _old;)>. Update total dif f
using total_dif f = total_dif f +dif f.

P3. 1If total _dif f > limat then go to P4, else go to P5.

P4. Reset total_dif f to 0 and go to P2.

P5. Write out weight file and determine the fuzzy membership value uj; for each

input vector & by using Eq. (3).

U WO

Membership
Layer

xopoTQam®oT

oo T

Input Vector

Fig. 4. Fuzzy self-organizing feature map neural network.

The FSOFM algorithm has certain advantages over GLVQ [23] in that
there is no need to determine a winning output node. This property of
FSOFM leads to a uniform weight update rule for all nodes. Details and per-
formance of sequential and parallel versions of the algorithm can be found in
the original paper [26]. Experimental studies indicated that the network re-
produced the segmentation results from an earlier standard implementation
of the fuzzy c-means algorithm [25] with close to two orders of magnitude
increase in performance.

The network is trained with a set of wavelet processed images that are a
representative sample of the types of obstacles that a rover would encounter.
The right image from some of the stereo pairs (taken by hazard cameras on
SRR) that were used to train the navigation FSOFM are shown in Fig. 5.
The actions generated by the FSOFM for each stereo image pair are clockwise
from top left: turn right, turn left, backup, go either way, stop at goal, and go
forward. A total of five hundred stereo pairs were used for the training ses-
sion, which took 637 epochs to converge. This should be compared to a back-
propagation implementation, which typically takes hundreds of thousands of
epochs to converge. Recall of the trained images was 100%. An advantage
of using the FSOFM for the action generation level lies in the membership
values that are generated at the output nodes. The sum of these values is nor-
malized to one, and the relative size of the membership values gives a ranking
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Fig. 5. Right stereo images from FSOFM training samples.

of the actions that are possible. The response to a unknown ambiguous in-
put would be 0.16 from every output node, which means that any output
greater than this is the favored action, with the largest membership value
being favored. The response of the network to inputs that it was not trained
with are shown in Fig. 6. Actions (membership values) that were generated
for the images from left to right in the figure are: turn left (0.52), go forward
(0.41), and turn right (0.37). The middle image also returned a membership
value of 0.27 for turn left, which indicates that movement towards the left
will be necessary to avoid the obstacle in the long run. Movement far from
an obstacle is automatically generated, and the rover will only turn when 1its
field of view has the vector of wavelet coefficients that indicate looming of an
obstacle large enough to require avoidance behavior.

E

£

o

B
-

Fig. 6. Actions returned from FSOFM with unknown inputs. Although the system
was not trained with these images (right image from stereo pair shown), it was able
to generalize to the appropriate actions.
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In this application, the FSOFM is employed to provide useful information
for collision-free navigation. In particular, the FSOFM returns membership
values that give a strong indication of the obstacle content of the local envi-
ronment. To date, the wavelet and neural network strategies have been used
to navigate the SRR platform in laboratory testbeds comprised of sand and
rocks. Additional phases of testing and validation in uncontrolled outdoor
terrain are planned for the near future. This case study focuses on a high-
level vision-based strategy for terrain perception using efficient stereo image
processing to facilitate rover navigation. In the following section, Case Study
2 describes a terrain perception strategy that employs low-level monocular vi-
sion for maintaining mobility performance during navigation via supervisory-
level control of vehicle speed and terrain-aided position estimation on varied
terrain surfaces.

4 Case Study 2: Terrain-Aided Mobility

To achieve effective mobility in natural terrain, it is desirable for motion con-
trollers to accommodate physical interactions between the mobility system
and rugged terrain while maintaining vehicle safety and reasonably accurate
position estimation. While a rover traverses outdoor terrain, perception of
the type and condition of the terrain surface provides clues for safe mobility
assessment. Human automobile drivers are able to perceive certain road con-
ditions (e.g., oil slicks, pot-holes, and ice patches) as measures of safety, and
react to them in order to reduce the risk of potential accidents. In a similar
manner, rover potential safety can be inferred and reacted on the basis of
knowledge about the terrain type or surface condition. Two prevalent effects
of wheel-soil interactions are wheel slippage on low tractive surfaces and wheel
sinkage on soft surfaces. On dry paved roads, traction performance is maxi-
mal for most wheeled vehicles due to the high coefficient of friction/adhesion
between the road and the tread. On off-road terrain, however, a variety of
surface types are encountered on which rover wheels are susceptible to slip-
page. Excessive wheel slippage reduces the effective traction that a rover can
achieve and, therefore, its ability to make significant forward progress. On
soft soils, such as fine-grained sand, excessive wheel slippage can often lead to
wheel sinkage and eventual entrapment of the vehicle. Frequent loss of trac-
tion during a traverse from one place to another will also detract significantly
from the ability to maintain good position estimates for rover localization.
Non-systematic localization errors due to wheel slip are compounded by er-
rors due to wheel sinkage. As the load-bearing strength of the terrain/soil
varies so does the amount of wheel sinkage. This has the effect of varying
the effective wheel radius, which is an important parameter in the kinematic
models used for position estimation. Unfortunately, wheel slippage and sink-
age are often difficult to measure and estimate in a straightforward manner.
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Some progress has been made, however, in developing statistical estimation
approaches for planetary rovers [27].

This case study addresses the problem of mitigating the effects of wheel
slippage and sinkage through active management of traction via speed con-
trol, and effective wheel radius estimation. The target platform is the Pioneer-
AT (All-Terrain), a commercially available mobile robot designed for rough
terrain mobility. At JPL, it is utilized for research and development of percep-
tion and navigation concepts for eventual integration on more capable field
robots. The factory configuration of the robot includes a low-profile chassis
with a PID-controlled locomotion system of 4 wheels (driven by DC mo-
tors) and an array of ultrasonic range sensors, managed by an embedded 16
M Hz MC68HC11-based microcontroller. The system was enhanced at JPL
with additional onboard computing (Pentium IT laptop) and a vision system
for real-time terrain assessment (see Fig. 7). The laptop computer hosts all
high-level intelligence and commands the low-level motor control system. The
ultrasonic sensors are not utilized for this case study.

Fig.7. Pioneer-AT rover with enhancements.

4.1 Motivation and Approach

Traction control solutions are often derived from analyses based on the fol-
lowing equation for wheel slip ratio, As, which is defined non-dimensionally
as a percentage of vehicle forward speed, v [28]:

)\s:<1— - )><100. (5)
T Wy

Here, r,, is the nominal radius of the vehicle wheel and w,, is the wheel
rotational speed. Eq. 5 expresses the normalized difference between vehicle
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and wheel speeds. When this difference is non-zero, wheel slip occurs. The
objective of traction control is to regulate A; to maximize traction. This is
a relatively straightforward regulation task if v and w,, are both observable.
The wheel rotational speed w,, 1s typically available from shaft encoders or
tachometers. However, it is often difficult to measure the actual over-the-
ground speed v for off-road wheeled vehicles. This is due to a lack of ade-
quate practical sensing solutions as well as nonlinearities and time-varying
uncertainties caused by wheel-soil interactions [29]. Effective solutions have
been found for automotive applications, but in many of these cases, measure-
ment of v is facilitated by an even surface on which the vehicle travels, or by
special sensing arrangements engineered for the operating environment. In
large part, the available automotive solutions are not directly transferable to
off-road vehicle applications. The traction management problem for off-road
robotic vehicles can be addressed using a soft computing approach that does
not rely on accurate sensing of over-the-ground vehicle speed to compute
wheel slip. Instead, the strategy relies on visual perception of terrain surface
texture to infer appropriate tractive speed controls.

Distinct terrain surfaces reflect different textures in visual images. The
ability to associate image textures to terrain surface properties such as trac-
tion, hardness, or bearing strength is directly useful for autonomous traction
management. To provide this capability, we make use of an onboard monocu-
lar camera pointed such that its field-of-view (FOV) covers the ground area in
front of the rover as illustrated in Fig. 8. On the Pioneer-AT shown in Fig. 7,

Fig. 8. Camera mounted on rover.

the ground-facing camera on the front of the rover is mounted 0.3 m above the
ground, tilted downward 45° with a 45° FOV. This camera enables surface
traction classification using soft computing-based image analysis. (Cameras
shown mounted on the raised platform are used for strategic navigation.) In
particular, hard computing methods of computer vision are combined with
an image texture classification approach using an artificial neural network
(ANN). This provides an automated method of classifying the terrain surface
just ahead of the rover with respect to tractive quality. The ANN is adopted
to realize this capability due to its effectiveness for representing arbitrary
input-output relationships. This qualitative knowledge serves as input to a
supervisory fuzzy logic speed controller, which produces speed recommenda-
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tions associated with the current perception. The fuzzy logic implementation
also serves to absorb the effects of potential uncertainties in quantities rep-
resenting the traction classification and inferred speeds. Simple fuzzy speed
control rules are formulated based on off-road driving heuristics for facilitat-
ing maintenance of wheel traction, thereby mitigating excessive wheel slip.
For a variety of potential surface types, the maximum speeds achieved before
the onset of wheel slippage (tractive speeds) are determined from empiri-
cal traction tests performed with the actual rover. Given this information,
commanded vehicle speed can be modulated during traversal based on vi-
sual classification of the terrain surface type in front of the rover. This is
analogous to the perception-action process that takes place when a human
driver notices an icy road surface ahead and decelerates to maintain traction.
The perception of the surface type is also used to roughly estimate the effec-
tive wheel radius used for dead-reckoning on classified terrain surface types.
Details of the implementation follow.

4.2 Vision-Based Strategy and Implementation

Considering the typical surfaces that the rover may encounter, three dif-
ferent texture prototypes are selected to train the ANN: sand, gravel, and
compacted soil. Classification of the different textures is achieved using the
following strategy:

o Extract a set of 40 x 40 image blocks from image data.

¢ Reduce image data dimensionality using orthogonal sub-space projection.

e Train the ANN on a set of texture prototypes projected on the eigenvector set.
e During run-time, feed projected texture images to the trained ANN.

e Extract texture prototype output from network & classify ground surface type.

Assuming the section of the ground image just ahead of the front wheels
is free of obstacles, a set of 40 x 40 pixel image blocks is randomly selected
from a camera image of size 320 x 280 pixels. The assumption of an obstacle-
free area immediately ahead 1s plausible since a separate strategic navigation
module handles the more forward-looking function of guiding the vehicle to-
wards traversable terrain; navigation details are reported in [30]. To reduce
the large data dimensionality inherent in typical computer vision-based ap-
plications, a filtering step is performed using a standard technique called
Principal Component Analysis (PCA) [31]. PCA is a linear optimal method
for reducing data dimensionality by identifying the axis about which the de-
sired feature set varies the most. This orthogonal sub-space projection of the
image subset permits effective extraction of features embedded in the surface
image data set in real time. This technique reduces the dimensionality of
the image set while preserving as much of the signal as possible. PCA com-
putes a set of orthonormal eigenvectors (filters) of a data set that captures
the greatest correlation between features. The filters associated with a given
feature set are derived from the distribution of potential dynamic features
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embedded in the images. To characterize the distribution of these features,
the covariance matrix, R, is found for image subsets containing the desired
dynamic features. The eigenvector problem; Rw = Aw, is solved to derive
the set of filters, w, used in the algorithm outlined above to maximize the
greatest correlation between features. A total of 30 eigenvectors is used to
reduce the 40 x 40 image block (1600 pixel values) to a pattern set of 30
values (Fig. 9) by projecting the image data onto the most significant filters.
This reduced data set is then used to train the ANN (Fig. 10) to associate
texture with several surface types.

The ANN uses 30 input nodes corresponding to the projected image block
and 1 output node representing the surface type classification; its hidden layer
has 20 processing elements. Initially, the ANN is trained using backpropaga-
tion by finding a set of weights that produce the desired surface type classi-
fication for given training data input. After training the network on typical
image data representing different texture prototypes imaged in different illu-
mination conditions, it is utilized to classify surface types during run-time.
For the algorithm, the network output provides the qualitative information
needed to make any necessary adjustments to wheel speed in order to main-
tain traction on the classified surface. Fig. 11 shows several images of real
terrain data properly classified by the trained ANN; these images were not
included in the data set used to train the ANN.

Input Layer

Hidden Layer

Dutput Layer

Frojected :
Image Data g Surface
Type
Fig. 9. Texture eigenvectors. Fig.10. ANN for surface classification.

gravel compacted soil

Fig. 11. Terrain surface images classified by the ANN.
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Tractive Speed Modulation The ANN is trained to classify ground tex-
tures and produce surface type outputs represented as numerical values in
the unit interval [0, 1], with 0 corresponding to surfaces of very low traction
(e.g., ice) and 1 corresponding to surfaces of very high traction (e.g., dry
cement). This is a design decision motivated by a desire to establish some in-
tuttive correlation to actual wheel-terrain coefficients of friction. In this way,
we can make a qualitative association between output of neural networks and
expected terrain traction in front of the rover. We will refer to the texture
prototype output as the traction coefficient, denoted by C}. The range of
traction coefficients, [0,1], obtained from the ANN is partitioned using three
fuzzy sets with linguistic labels of LOW, M EDIUM, and HIGH as shown
in Fig. 12. Based on these definitions, a single-input-single-output fuzzy logic

H(Cp H(vp

1 LOW MED HIGH il SLOW MOD. NOM.

V4
0 05 1 St 0 Vmex'

Fig. 12. Fuzzy sets for traction management.

controller infers tractive speed set-points, v;, for input to the low-level PID
wheel motor controller. The range of allowable speeds is partitioned using
fuzzy sets labeled SLOW, MODERATE, and NOMINAL as shown in
Fig. 12, with v, specified according to the application. The following fuzzy
logic rules are applied to modulate tractive speeds in proportion to expected
terrain traction in front of the rover:

o [F C; is LOW, THEN v; is SLOW.
o [F C; is MEDIUM, THEN v; is MODERATE.
o IF C; is HIGH, THEN wv; is NOMINAL.

Complete definition of membership functions for tractive speeds v is
based on results of prior traction tests as mentioned earlier. As such, these
membership function definitions are vehicle-dependent and reflect knowledge
derived about non-slip speeds achieved when the vehicle was tested on vari-
ous terrain surfaces. For best results, traction tests should be performed on
surfaces that represent the expected roughness, hardness, and slope varia-
tions of the rover operating environment. Once membership functions are
defined, the robot is equipped to perceive and react to learned terrain condi-
tions in a similar manner as a human driver. A more sophisticated approach
to perception and reaction on very challenging terrain is proposed in [7],
and is better suited for articulated rover mobility mechanisms that are capa-
ble of kinematic reconfiguration. That strategy uses look-ahead stereo visual
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perception as well as onboard kinematic analysis of potential tip-over and
expected traction to plan subsequent stable and tractive configurations.

Effective Wheel Radius Modulation The sophistication of localization
methods for outdoor mobile robots depends on the available sensor suite on-
board the vehicle. A variety of viable hard computing solutions exist, many
of which employ several sensor types (e.g., wheel odometry, inertial mea-
surement units, GPS, visual odometry, sun sensing, etc.) and perform sensor
fusion for position and attitude estimation, often based on Kalman filter for-
mulations [32-35]. The vehicle employed in this case study uses odometry
based on wheel encoder data as the primary means of position estimation.
Such dead-reckoning is prone to accumulated error during traversal. As such,
it 1s not recommended as a sole means of position estimation for field mo-
bile robots over significant distances. In lieu of more sophisticated estimation
methods due, for example, to limitations of onboard sensing, it is highly
desirable to adopt techniques for improving dead-reckoning accuracy. One
such technique is a wheel velocity synchronization approach described in [32],
which 1s designed for improved odometry and power efficiency of 6-wheeled
rovers with independently-driven wheels. As each wheel experiences different
loading profiles, the wheel velocity synchronization serves to minimize motion
interactions between them which may cause excessive wheel slippage and the
tendency to side-slip as the suspension system traverses over obstacles. The
Pioneer-AT platform used in this case study is kinematically simpler. The
two wheels on each side of the platform are physically coupled for synchro-
nized drive motion, and the platform is steered differentially due to relative
action of the paired wheels on either side.

For the simpler Pioneer-AT, the traction coefficient described above can
be used to address a more fundamental aspect of the position estimation
problem, namely, position error reduction via intelligent estimation of effec-
tive wheel radius. As mentioned earlier, the accuracy of kinematic models
used to compute rover localization updates depends on the specification of
a nominal wheel radius, r,,. This kinematic parameter is used to compute
the equivalent linear distance 7,60, traveled by a wheel after any rotational
wheel displacement 6,, on the terrain. For the Pioneer-AT, these linear dis-
tances are used to compute robot position and heading updates in a reference
coordinate frame according to the following kinematic equations:

gw r+ 6111 .

Tpyl = Tk — Ty <’f’l) 8N Gpy1, (6a)
6111 r+ 6w

Y41 = Yk + Ty <fl) COS Ppy1, (6b)

ew r gw
Pr41 = Ok + Tw (7 ¥ ’l) : (6¢)
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Here, z and y are Cartesian coordinates of the robot position on the terrain
surface and ¢ is its heading; #,, » and 6, ; are the rotational displacements of
the right and left wheels (measured by encoders in the two front wheels), and
d is the lateral distance between them. The displacements of wheels on the
same side are assumed to be equal due to the physical coupling of the Pioneer-
AT locomotion mechanism. The influence of r,, on the localization update is
apparent in these equations. For compliant wheels/tires such as those on the
Pioneer-AT, r,, is reduced as the tire compresses in normal reaction with the
terrain to an effective wheel radius, r.s;, which should be used instead of r, in
Egs. (6a)-(6¢) to yield more accurate updates. Non-compliant wheels produce
a similar effect. For example, as a vehicle with non-compliant wheels traverses
terrain with both hard-packed soil and soft sand, use of r,, in the kinematic
model is valid only over the hard-packed terrain. As the terrain load-bearing
strength decreases (over softer soil), so does the effective wheel radius, r.¢¢,
and the accuracy of the model. To reduce the effect of propagating this non-
systematic error during rover traverses on varied terrain, we make further use
of C} to estimate the varying r.;; according to the following linear regression
relationship,

Teff = ry Cy + Creg, (7)

where ¢4 is a regression constant, which can be evaluated for a given vehicle
via regression analysis of empirical data produced by multiple runs over varied
terrain surfaces. Here, linear regression is assumed to produce a sufficient
estimation model. However, an effective wheel radius estimation model for a
given vehicle and terrain could require nonlinear regression to achieve desired
improvements. It should be noted that this may still be insufficient depending
upon the localization accuracy required in a given application. With the
luxury of additional onboard sensing, such as an inertial measurement unit
(including rate gyroscope and accelerometers), one could improve the position
estimate further by employing the well-known hard computing techniques of
Kalman filtering [2]. A good example of this is provided in [33] where a
Kalman filter is formulated to improve localization for the Pioneer-AT robot.

This case study describes a low-level vision-based strategy for terrain
perception with supervisory-level fuzzy control of tractive vehicle speed and
terrain-aided position estimation. Statistical techniques [36] and color-based
methods [37] for terrain classification have also been developed at JPL for
navigation and mobility in vegetated terrain. These applications employ laser
rangefinders as well as color and infrared stereo cameras for day and night
vision, and the target platforms are cross-country military unmanned ground
vehicles. In the next section, Case Study 3 covers an application of fuzzy
logic speed control for a military all-terrain autonomous vehicle that differs
significantly in size and propulsion from the field robots discussed thus far.
The soft computing strategy, employed at a lower level, serves to overcome
the lack of a complete analytical model.
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5 Case Study 3: Adaptive Fuzzy ATV Speed Control

In this case study, an adaptive fuzzy speed control design for a throttle-
regulated internal combustion engine on an All Terrain Vehicle (ATV) is
presented. The ATV, shown in Fig. 13 is one of several mobile platforms
used in the CyberScout project at Carnegie Mellon University, which aims to
develop distributed mobile robotics technologies that will extend the sphere
of awareness and mobility of small military units. The low-level ATV speed
controller is one of the subsystems crucial to achieving complete autonomy.

Various automatic speed controllers based on hard computing techniques
alone (e.g., adaptive, robust, and sliding model) have been implemented on
automobiles. However, the proposed control techniques are not directly ap-
plicable to the ATV throttle control problem for the following reasons. First,
the ATV engine is mechanically controlled via a carburetor, unlike most auto-
mobiles, which have microprocessor-based engine management systems that
guarantee maximum engine efficiency and horsepower. Second, the ATV car-
buretor clearance makes it difficult to incorporate a sensor to measure the
throttle plate angle, which is required in virtually all of the automotive speed
controllers reported in the literature. Third, and most importantly, automo-
bile cruise control does not work well at speeds below 30 miles per hour
(mi/h) due to engine nonlinear torque and speed fluctuations. Finally, the
ATV throttle is actuated via an R/C servo, with no explicit position feed-
back, instead of a pneumatic actuator which is the preferred actuator in most
automobiles. The adaptive fuzzy throttle control strategy is applied to ad-
dress these constraints for the ATV. Fuzzy logic rules are formulated from
extensive experiments conducted by human operators and based on quantita-
tive data. An adaptive control law is applied to augment the soft computing
based control.

Ci

Fig. 13. Autonomous CyberATV “Lewis”.
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5.1 Motivation and Approach

The intended military operations task for the ATV requires that the speed
control system be designed to provide smooth throttle movement, zero steady-
state speed error, constant vehicle speed over varying road slopes, and ro-
bustness to system variations and operating conditions for a 2-30 mi/h speed
range. The two main challenges in designing an effective speed controller for
the ATV are: 1) the lack of a complete mathematical model for the engine,
and 2) the highly nonlinear nature of the engine dynamics, especially for the
targeted low speed range of 3-30 mi/h. Both of these factors make the use of
classical control strategies such as PID control ineffective. To elaborate, ini-
tial open-loop experiments conducted on level terrain revealed that humans
could not easily drive the ATV at speeds below 10 mi/h, shedding light on
the nature of the nonlinear relationship between throttle valve openings and
speed. Also, the throttle valve-opening threshold for initiating vehicle move-
ment varied from one trial to the next, indicating a shifting operating point.
Attempts to apply conventional PID control revealed that a PI controller
could be used for higher speeds where the carburetor operation is fairly lin-
ear, i.e., speeds above 15 mi/h, thus covering the upper portion of the target
speed range. (The measured speed signal is very noisy, so it was not feasi-
ble to implement a derivative component for a PID controller.) This result
indicates that a possible approach is to use more than one control strategy
via lookup tables, depending on the speed range. However, it is very diffi-
cult to apply conventional control techniques for the ATV since a complete
mathematical model of the engine is not available, and developing this model
requires information about the engine, which the manufacturer was unwill-
ing to provide. An alternative approach is fuzzy logic control (FLC), since
human experience combined with the extensive quantitative and qualitative
results can be employed effectively in fuzzy systems. It was found that while
fuzzy control provided very smooth throttle movement, it was insufficient
for achieving the required steady-state accuracy, particularly for substantial
changes in the terrain (up and down hill). Several attempts to tune the fuzzy
membership functions did not significantly reduce the steady state error, sug-
gesting the need for adaptivity. Since the FLC strategy worked fairly well,
an adaptive control law based on that strategy was considered. Details of the
fuzzy control strategy and adaptive control design are discussed below.

5.2 Fuzzy Speed Control Design and Implementation

The design goal for the ATV speed control is to minimize the magnitude
of the speed error, ¢, defined as the difference between desired and actual
speed. Human operators can control the speed of the ATV via a throttle
lever, which opens and closes the throttle valve to increase or reduce the
speed of the ATV. Based on familiarity with the speed response to this action,
fuzzy rules were formulated using speed error and change in control input to
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the throttle actuator. Automatic actuation of the ATV throttle is achieved
via a Futaba R/C servomotor (added to the system) which is controlled by
pulse width modulation (PWM) such that pulse widths of 1 ms, 1.5ms, and
2ms correspond to idle, half, and full throttle, respectively. Speed feedback
is obtained via a tachometer mounted in the gearbox. The change in throttle
control is defined using the two past values of the control input, u, and
can be expressed as Au = u(g_1)7 — Uk _2)r Where discrete time ¢ = kT,
k=0,1,2,...,n and T is the sampling and control update period.

Fuzzy input and output membership functions are shown in Fig. 14. The
five linguistic labels for speed error input (£) are: Negative Large (NL), Neg-
ative Small (NS), Zero, Positive Small (PS), and Positive Large (PL). Three
linguistic labels are similarly defined for the input change in throttle opening
(Au). The five linguistic labels for the output throttle opening (u) are: Zero,
Small (SM), Medium (MED), Large (L.G) and Very Large (VLG). The ranges
of these linguistic variables were determined by experimentation and the
physical constraints of the sensors employed, e.g., the R/C servomotor input
pulse width command range of 1-2 ms. The Zero membership function center
for throttle opening is defined to be slightly above idle engine speed. The FLC
was implemented using product inference and a center-average defuzzifier
[38]. Fig. 15a shows the complete set of fuzzy rules for u in tabular form along
with a block diagram of the control structure (Fig. 15b), in which the deriva-
tive block represents Au. Rules in the table of Fig. 15a can be interpreted in
linguistic form. For example, the rule specifying “Very Large” for the throt-
tle opening may be written as: IF eis PLand Auis Zero,THEN uis VLG.
The fuzzy linguistic label names used here give an intuitive sense of how
the rules apply. Experimentation and tuning of the membership functions,
revealed that this rule set was sufficient to encompass all realistic combina-
tions of inputs and outputs. Recall, however, that this fuzzy control was not
sufficient to achieve the required steady-state accuracy alone. The theoretical
formulation of the adaptive fuzzy control is outlined below.

5.3 Adaptive Fuzzy Control Solution

Assume that the rule base consists of multiple-input single-output rules of
the form RU) : IF 24 is A and...andx,is A, THEN yisCJ, where x =
(z1...2,) € N, y; € S denotes the linguistic variables associated with in-
puts and outputs of the fuzzy system. Ag and C7 are linguistic values of
linguistic variables x and y in the universes of discourse N and S respec-
tively; j = 1,2,...,Qgr (number of rules). A fuzzy system consisting of a
singleton fuzzifier, product inference, center-average defuzzifier and triangu-
lar membership functions can be written as [38]

o0 S [T s (2]
o [T s ()]

; (8)
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Fig. 14. ATV speed control input and output membership functions.

Au
. NS | zERO Ps
NL ZERO ZERO ZERO Desired +~ Error Adaptive R/IC Throttle
eed € Fuzzy Servo [T| Plate
NS | SMALL | SMALL | SMALL S _ Controller
ATV
zero| zERO | zERO | zERO Lo
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VERY Actual Speed Tachometer
PL |MEDIUM LARGE LARGE
@ (b)

Fig.15. (a) Fuzzy rule table for ATV speed control; (b) Controller block diagram.

where f : N C R = R, x = (z1...2,)T € N, p4i(x;) is a triangular
membership function and %’ is the point in S where po; is maximum or
equal to 1. If yu ., (x;) and 3’ are free (adjustable) parameters, then (8) can

be written as

F(x) = 07 ¥ (x), (9)

where 9 = (y!...y9") is a parameter vector and ¥ (x) = (¢! (x)...9¥9%(x))7
is a regression vector with the regressor given by

_ I1; NA{(l’i)
> (IT NA{(CLV’)).

Eq. (9) is referred to as an adaptive fuzzy system [38]. There are two main
reasons for using adaptive fuzzy systems as building blocks for adaptive fuzzy
controllers. Firstly, they have been proven to be universal function approxi-
mators [38]. Secondly, all the parameters in ®(x) can be fixed at the begin-
ning of the adaptive fuzzy system expansion design procedure, so that the
only free design parameters are . In this case f(x) is linear in the parameters.

Wi (x) (10)
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The advantage of this approach is that very simple linear parameter estima-
tion methods can be used to analyze and synthesize the performance and
robustness of adaptive fuzzy systems. If no linguistic rules are available, the
adaptive fuzzy system reduces to a standard nonlinear adaptive controller.
This approach is adopted to synthesize the adaptive control law.

Adaptive Law Synthesis and Implementation From theoretical con-
siderations and quantitative data, the following model was developed for the

ATV engine [40]:

' —d
N 1 0 N 0
A 7. ,

where N is the engine speed (RPM); dy and D; are respectively engine fric-
tion and airflow constants; J, is the engine moment of inertia; ¢, is derived
from the intake manifold and engine displacement; ¢; is derived from the
engine efficiency, combustion heat, and air-to-fuel ratio; 7,, is the engine
volume efficiency; m, is the net manifold air-mass flow rate; a is the throttle
plate angle; and E lumps together higher-order cross-coupling terms and load
torque. This engine model (11) represents a primitive mathematical model
of internal combustion engine dynamics and by no means captures all the
nonlinear parameters of the engine. The model can be expressed as

7z = Az + Bu+ E(z) (12)

where A is Hurwitz and E(z) is the uncertainty in the model expressed as
a function of the state z. Therefore, there exists a unique positive definite
matrix P that satisfies the Lyapunov equation

ATP+PA=-Q (13)

If the control input, u, is expressed as an adaptive fuzzy system then (12)
becomes,

% = Az + B9 ¢(z) + E(z) (14)

Let [39],
7= A7+ B0 Ty (3) (15)

be the ideal engine model with no uncertainty with ¢ = z — 2, where ¥*
denotes the optimal parameter vector. Therefore,

£=Ac+BoTy(e) + E (16)

where ¢ = 9 —9~, and E is an estimate of the upper bounds of the uncertain-
ties. The following Lyapunov function (with v > 0 as a design parameter)



Applied Soft Computing for Field Robotics

is used to derive the adaptive control law given by Eq. (18) below, which
ensures that € — 0 as t — oo (see [40] for details on this formulation).

1 )
V=c(cTPe+ A) 17
2<E ST IEl i
b= —|[B|||IE"PB|| 4 () (18)

The fuzzy rule table of Fig. 15a was used to implement (18) for adaptive
fuzzy speed control on the ATV. The insight gained from the non-adaptive
FLC was used to select the ¥ values to lie within the interval [1, 2]. The re-
maining control parameters were set as follows: Q = diag(3, 3), E = [120 0]7,
v = 0.00025; and ®(¢) was formulated using the I'F part of fuzzy rules in
Fig. 15a. Finally, P is obtained from the iterative solution of (13), and E and
~ are obtained empirically.

Typical ATV performance with the adaptive fuzzy control law i1s shown
in Figs. 16 and 17, which depict representative ATV responses to selected
speed commands (2.97mi/h and 3.4mi/h). Acceptable steady-state error
performance is achieved; in addition, considerable improvement over the non-
adaptive FL.C was observed with respect to disturbance rejection (load and
terrain). The adaptive algorithm responds to varying terrain by continuously
minimizing the speed error by tuning the center of the input membership
functions.

ATY Adaptive Fuzzy Speed Controller

ATY Speed (mis)

Tirme (sec)

Fig.16. ATV speed response to 1.3 m/s command.

At very slow speeds for the ATV (e.g., 1.0m/s), the speed response over-
shoot and settling times tend to increase. Since the ATV 1s back-heavy, con-
siderable momentum is required to initiate motion on slight inclines, and brief
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ATV Adaptive Fuzzy Speed Controller

ATV Speed jr's)

a 20 a0 [=h] a0 oD 120 140 180
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Fig.17. ATV speed response to 1.5 m/s command.

slippage in its automatic transmission causes considerable drops in speed to
well below the commanded speed. In such cases, the adaptive fuzzy control
responds with small increases in throttle input (rather than the large response
that a PT controller would typically generate) and regains the commanded
velocity without significant overshoot once the slipping ceases. For this case
study, the combined soft and hard computing-based control solution success-
fully achieves the desired properties of smooth and accurate control at speeds
within the desired range, as well as robustness to varying terrain.

6 Discussion and Conclusion

Autonomous robotic operations in natural outdoor environments require robots
to perform complex tasks for which analytical models of sufficient accuracy or
completeness are not always available. To address such issues while producing
reliable and safe field robotic systems it is often advantageous to supplement
conventional hard computing methods with particular soft computing tech-
niques. This chapter presented several case studies in this regard describing
soft computing techniques that have been integrated on physical field mobile
robot systems and validated in natural terrain environments.

Case study 1 focused on a high-level vision-based strategy for terrain per-
ception using efficient stereo image processing to facilitate rover navigation.
A hybrid wavelet processing and neural network system was described which
generates appropriate navigation actions based on input of a stereo pair of im-
ages. The system reacts to a pattern of wavelet coefficients in much the same
way as binocular neurons in the mammalian visual pathways. Case Study
2 described a terrain perception strategy that employs low-level monocular
vision to facilitate maintaining mobility performance during navigation using
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supervisory-level control of tractive vehicle speed. This case also presented a
fundamental approach to improving position estimation enabled by the same
perception system. The techniques applied in Case Study 2 may be preferred
for systems with minimal onboard sensing and computing resources. Case
Study 3 presented an adaptive fuzzy throttle control design for controlling
speed of an autonomous ATV driven by an internal combustion engine. The
control algorithm has been implemented on two other ATVs with very little
recalibration of the control parameters. The formulation of the fuzzy rules for
the system may be relevant to other practical applications where a complete
mathematical model is not available.

Soft computing has been successfully applied to address perception us-
ing neural networks based on both fuzzy self-organizing feature maps and
backpropagation, as well as supervisory and low-level speed control using
rule-based fuzzy logic and adaptive fuzzy systems, respectively. However, im-
plementation experiences associated with the case studies have revealed some
disadvantages of applying these soft computing methods for perception and
control. A key disadvantage, from the point of view of the perception ap-
plications, relates to specification of the initial knowledge that is embedded
within the system and ultimately used as the basis for motion decisions. For
example, the generalization capability (and therefore, success) of the vision-
based neural networks depends on the richness of a set of training images
and how well they represent the target environments. If the training set is
insufficient, there may be visual scenes for which the system has not learned
appropriate motion responses. It is not always obvious when this is the case,
and extensive testing may not reveal such insufficiencies. The strategies in
this chapter make use of empirical tests and adaptive learning techniques in
order to ensure that once initial knowledge is established, it can be improved
based on actual system behavior in subsequent tests. By allowing adaptive
capability, the initial establishment of a thorough knowledge base is not as
critical if significant testing is performed.

Regarding control applications, soft computing techniques have been sub-
ject to debate and skepticism, since they do not have the formal rigor of
conventional control techniques. This can be attributed to the fact that most
successful applications of soft computing are based on simulation and exper-
imental results, rather than the theoretical proofs relied upon by classical
control theorists and practitioners. Additionally, most soft computing ap-
plications have been in mass non-critical consumer goods with less stringent
performance criteria than the traditional control areas of aerospace and indus-
trial systems. Nevertheless, soft computing has been demonstrated to solve
some practical problems that have been beyond the reach of conventional
control techniques. The rapid growth of research in this area establishes the
fact that there is a genuine need for soft computing-based control strategies.
While technological tools exist for implementing them, tools for synthesis of
performance criteria, robustness, and design methodology are lacking, how-
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ever. Hence, there is a need for further research in this direction. Until tech-
niques and tools can be developed that can subject soft computing control
systems to such factors, the debate and skepticism are likely to remain.

The computing strategies described herein for perception and control were
developed for application on wheeled robots to be potentially deployed for
space and military missions. The case studies serve only as existence proofs
of the concepts presented, as well as practical implementation examples vali-
dated on research prototype vehicles. For real missions, various requirements
and operability or safety restrictions are specified on a task by task basis.
Compliance of combined hard and soft computing strategies with real mis-
sion constraints must be verified and validated through extensive testing prior
to field deployments. Note that the utility of the strategies presented is not
limited to the specific field robots described in this chapter. Indeed, the soft
computing strategies may be adapted and integrated with hard computing
solutions on a wider variety of autonomous field robots to address common
problems of perception, navigation, and control. In practice, it is typically the
solutions to the common problems that must be tailored for specific robotic
systems. Particular design and implementation decisions must be governed by
the real-world task constraints, mission objectives and requirements, and/or
vehicle capabilities.
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